MECHANICS OF **STRUCTURES** VOL. I [STRENGTH OF MATERIALS]

By Dr. H. J. Shah & S. B. Junnarkar

*

~~~~~~

~~~~~~

Edition	:30 th Edition:2012
ISBN	: 978-93-80358-65-9
Size	: 170 mm × 240 mm
Binding	: Paperback with 4 Color Jacket Cover
Pages	: 992 + 20

Strength of Materials] THE REAL PROPERTY IN COMPANY ÷

MECHANICS

OF

STRUCTURES

VOL. I

CONTENT

£

te	 SIMPLE STRESS SIMPLE STRAIN STATICALLY INDETERMINATE MEMBERS THERMAL STRESSES AND STRAINS STRESSES ON INCLINED PLANES COMBINED STRESSES MOHR'S CIRCLE METHOD IMPACT OR SHOCK LOADING: STRAIN-ENERGY TESTING OF MATERIALS – 1 SHEAR FORCES AND BENDING MOMENTS – 1 SHEAR STRESSES IN BEAMS SHEAR STRESSES IN BEAMS DEFLECTIONS I FIXED BEAMS CONTINUOUS BEAMS CONTINUOUS BEAMS COMPOSITE BEAMS SHAFTS AND SPRINGS IN TORSION TESTING OF MATERIALS – 11 COLUMNS AND STRUTS OF UNIFORM SECTION
	26 : RADIAL PRESSURE – CYLINDRICAL AND SPHERICAL SHELLS
	27 : RIVETED AND BOLTED JOINTS 28 : WELDED JOINTS
ig ed	
).,	30 . UNSTRIMETRICAL BEINDING 31 : BENDING STRESSES IN CURVED BARS
s.	

ABOUT THE BOOK
This standard text-book along with its companion Vol. II is designed to cover the complet syllabi of the subjects of Strength of Materials and Theory and Analysis of Structures.
The outline of the book is:
Chapters 1 to 8 consist the study of Stresses and Strains
Chapters 9 and 24 discuss the Testing of Materials
Chapters 10 and 11 Shear Forces and Bending Moments
Chapters 12 and 13 Properties of Lines and Areas
Chapters 14 and 15 Stresses in Beams
Chapters 16 and 17 Deflections
Chapters 18 and 19 Analysis of Fixed and Continuous Beams
Chapters 20 and 21 Composite and Reinforced Concrete Beams
Chapters 22 Direct and Bending Stresses and Chapter 23 Torsion
Chapters 25 Columns and Struts of Uniform Section
Chapters 26 Cylindrical and Spherical Shells
Chapters 27 and 28 Riveted, Bolted and Welded Joints
Chapters 29, 30 and 31 consist of special topics such as Shear Centre, Unsymmetrica Bending and Bending Stresses in Curved Bars.
The book within its 971 + 20 pages, it now comprise the following:
* 900 Neatly drawn figures
* 600 Fully illustrated solved examples
* 715 Unsolved examples with answers at the end of chapters
* 33 Useful tables
It is hoped that this edition should prove extremely useful to students of Engineering readin for Degree Examinations of all the Universities of India, Diploma Examinations conducte by various Boards of Technical Education, Certificate Courses, as well as for the U.P.S.C G.A.T.E., A.M.I.E., I.E.S and other similar competitive and professional examinations It should also prove of great interest and practical use to the practising engineers.

Checklist

MECHANICS OF STRUCTURES VOL. I DETAILED CONTENTS

Chapter 1 SIMPLE STRESS

- 1-1. Introduction to Mechanics of deformable bodies
- 1-2. Loading a bar
- 1-3. Principle of superposition
- 1-4. Classification of loaded bar
- 1-5. Gradual, sudden, impact and shock loading
- 1-6. Tension and compression
- 1-7. Resistance of an axially loaded bar
- 1-8. Concept of a stress
- 1-9. Normal stresses
- 1-10. Simple stress
- 1-11. Design of an axially loaded member
- 1-12. Non-prismatic bars
- 1-13. Axial force diagram
- 1-14. Rotating rings
- 1-15 Shear
- 1-16. Shear stress
- 1-17. Pure shear
- 1-18. Bearing stress Examples I

Chapter 2 SIMPLE STRAIN

- 2-1 Introduction
- 2-2. Linear strain
- 2-3. Shear strain
- 2-4. Elasticity
- 2-5. Hooke's law
- 2-6. Axial and shear deformations
- 2-7. Bars of varying section
- 2-8. Bars of uniformly varying cross-section
- 2-9. A bar subjected to self-weight
- 2-10. Bar of uniform strength
- 2-11. Bars subjected to uniformly varying loads
- 2-12. Pin-jointed determinate frames
- 2-13. Lateral strain: Poisson's ratio
- 2-14. Biaxial and triaxial deformations Examples II

Chapter 3 STATICALLY INDETERMINATE MEMBERS

- 3-1. Introduction
- 3-2. Composite bars
- 3-3. Equivalent modulus of a composite bar
- 3-4. Pin-jointed bars
- 3-5. Stresses due to lack of fit Examples III

Chapter 4 THERMAL STRESSES AND STRAINS

- 4-1. Introduction
- 4-2. General
- 4-3. Coefficient of linear expansion
- 4-4. Stresses due to changes of temperature
- 4-5. Compound bar
- 4-6. Composite bar
- 4-7. Bars of uniformly varying cross-section
- 4-8. Shrinking-on Examples IV

Chapter 5 STRESSES ON INCLINED PLANES

- 5-1. Introduction
- 5-2. Stresses on inclined plane of a bar under tension or compression
- 5-3. State of pure shear: Stresses on inclined planes
- 5-4. Linear strain of the diagonal BD
- 5-5. Relation between the Moduli of Elasticity and Rigidity for a given material
- 5-6. Bulk Modulus
- 5-7. Relation between three elastic constants Examples V

Chapter 6 COMBINED STRESSES

- 6-1. Introduction
- 6-2. Stress components

- 6-3. Element subjected to general plane stress system
- 6-4. Principal planes and principal stresses
- 6-5. Planes carrying maximum shear stress
- 6-6. Element subjected to principal stresses Examples VI

Chapter 7 MOHR'S CIRCLE METHOD

- 7-1. Mohr's circle method
 - Sign conventions Rules and construction Examples VII

Chapter 8 IMPACT OR SHOCK LOADING: STRAIN-ENERGY

- 8-1. Introductory
- AXIAL LOADING
- 8-2. Strain-Energy: Resistance-deformation diagram
- 8-3. Gradual, sudden, impact and shock loading
- 8-4. Limitations
- SHEAR LOADING
- 8-5. Shear Resilience
- 8-6. Strain-energy in terms of principal stresses
- 8-7. Relation between the elastic moduli
- 8-8. Criteria for design Examples VIII

Chapter 9 TESTING OF MATERIALS – I

- 9-1. Introduction
- 9-2. Metals and alloys
- 9-3. Testing machines
- TENSION TESTS
- 9-4. The complete tensile test
- 9-5. Stress-strain diagram
- 9-6. Physical properties of materials
- 9-7. Modulus of elasticity
- 9-8. Yield point by the offset method: Proof stress
- 9-9. Secant modulus9-10. Specific modulu
- 9-10. Specific modulus of elasticity9-11. Resilience
- 9-11. Resilience 9-12. Toughness
- COMPRESSION TESTS
- 9-13. The compression test
- 9-14. Compression tests on wood and concrete
- 9-15. Permissible stress: Factor of safety
- 9-16. Stress concentration

Examples IX

10-1. Introductory

10-6.

10-7.

10-8.

10-9.

11-2.

11-8.

11-9.

Charotar Publishing House Pvt. Ltd. Opposite Amul Dairy, Civil Court Road, Post Box No. 65, ANAND 388 001 India

Telephone: (02692) 256237, Fax: (02692) 240089, e-mail: charotar@cphbooks.com, Website: www.cphbooks.com

10-2. Types of beams

10-4. Sign conventions

Cantilevers

Examples X

a beam

11-1. Introduction

– I

- 9-17. Stress concentration factor
- 9-18. Importance of stress concentration under different loads

Chapter 10 SHEAR FORCES AND BENDING MOMENTS

10-5. Shear Force (S.F.) and Bending Moment (B.M.) diagrams

Chapter 11 SHEAR FORCES AND BENDING MOMENTS

S.F. and B.M. diagrams for beams with variable loading

Moment and loading diagrams drawn from shear diagrams

Relation between the S.F. and the B.M. at a cross-section of

9-19. Elastoplastic materials: Limit design

10-3. Actions on the cross-section of a beam

Simply supported beams

Overhanging beams

- II

11-3. Beams with end couples

11-7. Principle of superposition

11-6. Cantilever structures

11-10. Inclined beams

11-11. Graphical methods

Examples XI

11-4. Beams with an intermediate couple11-5. Supports offering pressures

Beams subjected to inclined loads

Chapter 12 CENTROIDS OF LINES AND AREAS

- 12-1. Introduction
 - **CENTROIDS**
- 12-2. First moment of an element of line and area
- 12-3. First moment of a line segment and a finite area
- 12-4. Centroids of lines and areas
- 12-5. Centroids of symmetrical lines and areas
- 12-6. Centroids by integration
- 12-7. Summary of centroids of common figures
- 12-8. Centroids of composite areas Examples XII

Chapter 13 AREA MOMENTS OF INERTIA

- 13-1. Introduction
- 13-2. Definitions
- 13-3. Radius of gyration
- 13-4. Parallel axis theorem
- 13-5. Moment of inertia by integration
- 13-6. Moment of inertia of composite areas
- 13-7. Graphical method for first and second moments of a plane section about an axis in its plane
- 13-8. Product of inertia
- 13-9. Moment of inertia with respect to inclined axes: Rotation of axes
- 13-10. Principal moments of inertia: Principal axes
- 13-11. Mohr's circle for moments of inertia
- 13-12. The Mohr Land circle of inertia
- 13-13. Momental ellipse Examples XIII

Chapter 14 BENDING STRESSES IN BEAMS

- 14-1. Simple bending
- 14-2. Theory of simple bending
- 14-3. Modulus of section or section modulus
- 14-4. Application of bending equation
- 14-5. Modulus of rupture
- 14-6. Beams of rectangular section
- 14-7. Strength of sections
- 14-8. Economic sections
- 14-9. Unsymmetrical and built-up sections
- 14-10. The Modulus figure
- 14-11. Beam of uniform strength
- 14-12. Strain energy in flexure
- 14-13. Laminated springs Examples XIV

Chapter 15 SHEAR STRESSES IN BEAMS

- 15-1. Resistance to shear force: shear stresses
- 15-2. Shear flow
- 15-3. Shear stresses in beams of rectangular and circular sections
- 15-4. Shear stresses in beams of I-section
- 15-5. Assumptions and limitations of the shear stresses formula
- 15-6. Shear stresses in built-up sections15-7. Beam of square section with one diagonal horizontal
- 15-8. Design for flexure and shear
- 15-9. Principal stresses and Principal planes at a point in a beam section
- 15-10. Curves of principal stresses
- 15-11. Principal stresses in an I-section
- 15-12. Strain-energy due to shear in a beam Examples XV

Chapter 16 DEFLECTIONS I

- 16-1. Introductory
- 16-2. Use of deflection computations
- 16-3. Bending into a circular arc
- 16-4. Relation between slope deflection and radius of curvature
- 16-5. Axes of reference
- 16-6. Limitations of the equation of elastic line
- 16-7. Computations from basic equation i Rio

- 16-8. Using the principle of superposition
 - 16-9. Cantilevers
 - 16-10. Propped cantilevers
- 16-11. Simply supported beams
- 16-12. Relation between maximum stress and maximum deflection
- 16-13. Propped beams Rigid and elastic props
- 16-14. Simply supported beam with an eccentric load W
- 16-15. Non-prismatic beams
- 16-16. Macaulay's method
- 16-17. Variable loading on a beam of uniform section
- 16-18. Closure Examples XVI

Chapter 17 DEFLECTIONS II

- 17-1. Moment area method
- 17-2. Method of elastic weights
- 17-3. Conjugate beam method
- 17-4. Impact loading on beams
- 17-5. Deflection by strain energy
- 17-6. Beams of variable section
- 17-7. Graphical methods Examples XVII

Chapter 18 FIXED BEAMS

18-1. Introductory

- INDETERMINATE STRUCTURES
- 18-2. Determinateness of the structure
- 18-3. Use of indeterminate structures
- 18-4. Methods of analysis
 - FIXED BEAMS
- 18-5. Fixed, built in, restrained or encastré beams
- 18-6. Method of superposition
- 18-7. Double integration method
- 18-8. Solution by moment area method
- 18-9. Sinking of support
- 18-10. Rotation of support
- 18-11. Review of deflection methods
- 18-12. Degree of restraint at supports for maximum bending moment to be as small as possible
- 18-13. Beams with related deflections Examples XVIII

Chapter 19 CONTINUOUS BEAMS

- 19-1. Continuous beams
- 19-2. The three moment theorem
- 19-3. Support settlement Examples XIX

20-2. Flitched beams

Examples XX

21-1. Reinforced concrete

21-5. Mild steel bars

21-7. Design of a beam 21-8. Classification of beams

21-10. Permissible stresses

21-14. Types of problems

Examples XXI

21-2.

Charotar Publishing House Pvt. Ltd. Opposite Amul Dairy, Civil Court Road, Post Box No. 65, ANAND 388 001 India 📆 Telephone: (02692) 256237, Fax: (02692) 240089, e-mail: charotar@cphbooks.com, Website: www.cphbooks.com

21-3.

Chapter 20 COMPOSITE BEAMS 20-1. Introductory

20-4. Deflection of composite beams

Steel as reinforcement 21-4. Types of reinforcement

21-11. Assumptions for flexure design

21-13. Transformed area method

20-3. Equivalent section: Transformed area method

Chapter 21 REINFORCED CONCRETE BEAMS

Compressive strength of concrete

21-6. High yield strength deformed (HYSD) bars

SINGLY REINFORCED BEAMS

21-12. Derivation of formulae for balanced design

21-9. Balanced, Under-reinforced and Over-reinforced design

Chapter 22 DIRECT AND BENDING STRESSES

- 22-1. Introduction
- 22-2. Combined axial and flexural load
- 22-3. Biaxial loading
- 22-4. Eccentric loading22-5. Limit of eccentricity22-6. Double eccentricity
- 22-7. Wind pressure on walls and chimney shafts
- 22-8. Coefficient of wind-resistance
- 22-9. Water and earth pressure on walls Examples XXII

Chapter 23 SHAFTS AND SPRINGS IN TORSION

- 23-1. Introduction
- 23-2. Assumptions23-3. Derivation of torsion formulae
- 23-4. Power transmitted: design of shafts
- 23-5. Torque diagrams
- 23-6. Stepped shaft
- 23-7. Composite shafts and tapered shaft
- 23-8. Keys and couplings
- 23-9. Combined bending and torsion
- 23-10. Combined bending and torsion and axial thrust
- 23-11. Torsion resilience of shafts
- 23-12. Shafts of non-circular sections subjected to torsion
- 23-13. Closely coiled helical springs: Axial loading
- 23-14. Closely coiled helical springs: Axial moment
- 23-15. Open coiled helical springs Examples XXIII

Chapter 24 TESTING OF MATERIALS – II

- 24-1. Flexure tests
- 24-2. Important flexure tests24-3. Shear tests24-4. Hardness

- 24-5. Brinell hardness test
- 24-6. Rockwell hardness test
- 24-7. Impact tests
- 24-8 Fatigue
- 24-9. Stress spectrum
- 24-10. Fatigue tests
- 24-11. The S-N curve
- 24-12. Endurance limit or fatigue limit
- 24-13. Fatigue failure
 - Examples XXIV

Chapter 25 COLUMNS AND STRUTS OF UNIFORM **SECTION**

- 25-1. Axial loading
- 25-2. Very long columns Euler's formula
- 25-3. Limitations of Euler's formulae
- 25-4. Intermediate columns
- 25-5. Rankine's formula
- 25-6. Design of struts and columns
- 25-7. Other empirical formulae25-8. Long columns under eccentric loading25-9. Prof. Perry's formula
- 25-10. Initial curvature on long column: Axial loading
- 25-11. Perry-Robertson formula
- 25-12. B.I.S. formula
- 25-13. Struts with transverse loading Examples XXV

Chapter 26 RADIAL PRESSURE – CYLINDRICAL AND SPHERICAL SHELLS

- 26-1. Thin seamless cylindrical shells
- 26-2. Riveted boiler shells
- 26-3. Thin spherical shell
- 26-4. Wire-bound thin pipes or shells
- 26-5. Thick cylinders: Lami's formulae
- 26-6. Design of thick cylindrical shells
- 26-7. Compound cylinders
- 26-8. Shrink-fit allowance: Initial difference of radii at junction
- 26-9. Thick spherical shells Examples XXVI

Chapter 27 RIVETED AND BOLTED JOINTS

- 27-1. Introductory
- 27-2. Rivets and riveting
- 27-3. Bolts and bolting
- 27-4. Bearing and friction type connections
- 27-5. Types of riveted and bolted joints
- 27-6. Definitions
- 27-7. Possible ways of failure of bearing type connection
- 27-8. Strength of a bearing type connection
- 27-9. Fastener value
- 27-10. Design of a riveted/bolted joint
- 27-11. Riveted joints in boiler shells
- 27-12. Structural joints
- 27-13. Diamond fastening
- 27-14. Pitch of rivets in built-up girders
- 27-15. Eccentric loading on rivets Examples XXVII

Chapter 28 WELDED JOINTS

- 28-1. Introductory
- 28-2. Forms of welded joints
- 28-3. Strength of a welded joint
- 28-4. Eccentric loading on welded joints Examples XXVIII

Chapter 29 SHEAR CENTRE

- 29-1. Shear flow in thin-walled open sections
- 29-2. Shear centre Examples XXIX

Chapter 30 UNSYMMETRICAL BENDING

- 30-1. Introductory
- 30-2. Unsymmetrical bending
- 30-3. Bending stress through product of inertia
- 30-4. The Z-polygon Examples XXX

31-6. I-section

31-8. Crane hooks

31-10. Piston rings

Charotar Publishing House Pvt. Ltd. Opposite Amul Dairy, Civil Court Road, Post Box No. 65, ANAND 388 001 India Telephone: (02692) 256237, Fax: (02692) 240089, e-mail: charotar@cphbooks.com, Website: www.cphbooks.com

Chapter 31 BENDING STRESSES IN CURVED BARS

31-9. Stresses in curved bars of small initial curvature

- 31-1. Pure bending of curved bars
- 31-2. Stresses in beams of large initial curvature
- 31-3. Rectangular cross-section
- 31-4. Trapezoidal cross-section31-5. Inverted T-section

31-7. Circular cross-section

Examples XXXI