The Art of Measuring Low Resistance

MMR-600, MMR-610 Microohmmeters

The MMR-600 Series meters are professional portable measuring instruments for testing very low resistances. Due to their special measurement algorithm they can be used for both resistive and inductive type of a specimen that makes the MMR-600/610 a perfect instrument for electricians testing electrical junctions, motors and power transformers windings. The results can be stored in the internal memory and sent to a computer via serial interface. A quick PASS/FAIL test function with results displayed and acoustically indicated simplifies measurements considerably. The MMR-600/MMR-610 meter can also be used for testing the quality of the junctions in a production process via the interface.

MMR-600 and MMR-610 features:

- Resistance measurement of:
 - Welded connections
 - Equipotential bonding
 - Terminals and connectors
 - Cable connections
 - Electrical connections of the heating elements
 - Rail fusion welds
 - Cables and wires
 - Coils (engines, transformers etc)
 - Low resistance coils
- Automatic discharge of a specimen inductance after a measurement
- · Checking the continuity of earth wire and quality of all the junctions
- Auto ranging
- Selectable unidirectional or bidirectional current flow during a measurement. Accordingly one or two results are obtained. The instrument shows one result or the average of two bidirectional results.
- Three modes of measurement triggering:
 - Normal -a measurement triggered by pressing the START button
 - Automatic a measurement triggered after detecting the connection of two pairs of terminals (voltage and current) to a specimen
 - Continuous measurements are triggered one by one continuously with a 3-second-readout refreshing
- Two measurement modes
 - Fast (3 seconds) for resistive specimen measurements
 - Slow (lasting a few minutes) for inductive specimen measurements

- High resistance to specimen noises (s/n rate <0,2)
- Programmable resistance window for R_{MIN} < R_X < R_{MAX} for fast PASS/FAIL tests
- Remote control of the measurements via interface
- Memory of 990 measurement results that can be sent to PC via RS-232C interface
- Large backlit graphic display
- Powered from NiMH batteries. A built-in charger with battery monitoring and charging process control
- Auto-off function
- · Easy to operate

Standard equipment

- · A set of the measurement cables:
 - Two 3m long two-core cables with banana plugs
- Cable for battery chargerFour "crocodile" clips
- SONEL-NiMH 4,8V battery package
- Operation manual
- Carrying case

Optional Accessories

 A set of test leads with pin probes Catalogue No.: 113969051

 RS-323C interface cable

Catalogue No.: 112542005

 SONEL PE software (for creating documentation from the measurement results, compatible

with the SONEL meters) Catalogue No.: 094229008

MMR-600, MMR-610 Technical Specifications

Nominal operating conditions:

Hommun operat	ing conditions.	
 measurement 	currentI	DC, 0,1mA-10A
	voltage	20mV
	current flow selectable,	
one or two dire	ctional	
 noise immunity 	addit. error	1% for 50 Hz
		100mV rms
 operating temp 		
nominal		+20°C25°C
operating		040°C
storage		20°C+60°C
 temperature co 	efficient	0,01% rdg/°C
 nominal line vo 	Itage for battery charge	r230V

Complies with standards:

• EN	61	010	-1:2002	2
------	----	-----	---------	---

•	measurement category	 Ca	ıt. II	I 300V	•
	tightness				

Other:		
 inputs protection 	ıup to	440V AC for 10 sec.
display	graph	nic LCM 192X64dots,
		lluminated, 98x35mm
dimensions		295 x 222 x 95mm
 weight with NiM 	H battery packaç	geca. 1,7kg
 power supply 		battery package
	typ	e SONEL-NIMH 4,8V
		asurements with 10A
 measurement tir 	ne:	
resistive mode		3 sec.
		few minutes
(depending on c		
inductance and	resistance)	0.10
• max. cables res	sistance for TUA	λ0,1Ω
• max. inductance	or specimen	40H
		10% MMR-600 10% MMR-610
• momory		990 test results
• auto-off time		2 minutes
hattery charging	time	ca. 2,5 hours
interface standa	rd	RS-232C
intoriace starida		

The Art of Measuring Low Resistance

Resistance measurements MMR-600

Range	Reso-	Accuracy	Voltage for full range	Meas.
01,999	1μΩ	±(0,25% rdg.	20mV	10A
mΩ		+ 2 μΩ		
2,0019,99	10μΩ	±(0,25% rdg.	20mV	1A
mΩ		+ 20 μΩ)		
20,0199,9	$0,1m\Omega$	±(0,25% rdg.	20mV	0,1A
mΩ		+ 0,2 mΩ)		
0,2001,999	1mΩ	±(0,25% rdg.	20mV	10mA
Ω		+ 2 mΩ)		
2,0019,99	10mΩ	±(0,25% rdg.	20mV	1mA
Ω		+ 20 mΩ)		
20,0199,9	0,1Ω	±(0,25% rdg.	20mV	0,1mA
Ω		+ 0,2 Ω)		

Resistance measurements MMR-610

Range	Reso-	Accuracy	Voltage for full range	Meas.
01,9999	0,1μΩ	±(0,25% rdg.	20mV	10A
mΩ		+ 0,2 μΩ		
2,00019,999	1μΩ	±(0,25% rdg.	20mV	1A
mΩ		+ 2 μΩ)		
20,00199,99	10μΩ	±(0,25% rdg.	20mV	0,1A
mΩ		+ 20 μΩ)		
0,20001,9999	$0,1m\Omega$	±(0,25% rdg.	20mV	10mA
Ω		+ 0,2 mΩ)		
2,00019,999	1mΩ	±(0,25% rdg.	20mV	1mA
Ω		+ 2 mΩ)		
20,00199,99	10mΩ	±(0,25% rdg.	20mV	0,1mA
Ω		+ 20 mΩ)		

- · voltmeter internal impedance: 200k
- "rdg" = of the reading

The errors given above are specified for bidirectional measurement current flow and refer to average value of two directions calculated from the following formula:

$$R \quad \frac{R_F + R_R}{2}$$

where R_F resistance at conventional "forward" current direction and RR resistance at conventional "reverse" current direction. The specified accuracy is not guaranteed for unidirectional measurement.